Why peatlands matter

Peatlands cover only 3% of the world’s land surface, but contain 500 gigatonnes of carbon within their peat – twice as much as all the biomass of the World’s forests. Peatland drainage allows oxygen to enter the peat, resulting in emissions of CO2 and often also N2O. While covering only 0.3% of the world’s land surface, drained peatlands cause disproportionally high CO2 emissions: they are responsible for nearly 5% of the world’s anthropogenic CO2 emissions (2 gigatonnes CO2 per year). Emission hotspots are Indonesia, the EU, Russia, China and the USA (Joosten 2009). In a country like Germany, drained peatlands constitute only 7% of the total agricultural land area. But they cause 99% of the CO2 emissions from agriculturally used soils and 37% of all emissions from agriculture (including animal husbandry; UBA 2016). In a peatland-rich state like Mecklenburg-Vorpommern, drained peatlands constitute the largest single source of greenhouse gas emissions with about 6.2 million t CO2-eq. per year (MLUV MV 2009).

  

Besides their climate impact, peatlands play a significant role for biodiversity: Peatlands provide a unique habitat for a broad spectrum of natural diversity at the genetic and species level and offer distinctive diversity at the ecosystem and landscape scales. In addition, wet and rewetted peatlands provide numerous other ecosystem services to society (Bonn et al. 2016), such as retention of pollutants and regulation of the local climate and the landscape water budget

 

Conventional agricultural use of peatlands is associated with lowered groundwater tables and resulting peat subsidence. Land subsidence makes further drainage increasingly difficult. It destroys the basis for peatland utilisation by using up the soil literally and irretrievably and has already resulted in large scale loss of productive land.

 

Thus, there is an urgent need for peatland rewetting from both an environmental and a climate policy perspective (TEEB DE 2014). Peatland rewetting should more often be linked to paludiculture. This wet peatland utilisation (Joosten et al. 2012, Wichtmann et al. 2016) includes traditional forms of land use (e.g. reed harvest for thatching), but also innovative types of use for peatland biomass as solid fuel or industrial raw material.

 

References:

Joosten, H. (2009): The Global Peatland CO2 Picture. Peatland status and emissions in all countries of the World. Wetlands International, Ede. 10 p. (PDF)

Joosten, H., Tapio-Biström, M.-L., Tol, S. (2012): Peatlands - guidance for climate change mitigation by conservation, rehabilitation and sustainable use. Mitigation of climate change in agriculture Series 5. FAO and Wetlands International, Rome. 114 p. (PDF)

MLUV MV (2009): Konzept zum Schutz und zur Nutzung der Moore. Fortschreibung des Konzeptes zur Bestandssicherung und zur Entwicklung der Moore. Schwerin. (PDF)

SRU (2012): Umweltgutachten 2012. Verantwortung in einer begrenzten Welt. Erich Schmidt Verlag. 420 S. (PDF)

Naturkapital Deutschland – TEEB DE (2014): Naturkapital und Klimapolitik – Synergien und Konflikte. Kurzbericht für Entscheidungsträger. Technische Universität Berlin, Helmholtz-Zentrum für Umweltforschung – UFZ, Leipzig. (PDF)

UBA (2016): Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2014. Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990 – 2012. 963 p. (PDF)

Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R. (2016): Peatland restoration and ecosystem services: science, practice, policy. Cambridge University Press. 493 p. 

Wichtmann W., Schröder C & Joosten H (2016): Paludiculture – productive use of wet peatlands. Climate protection – biodiversity – regional economic benefits. Schweizerbart Science Publishers, Stuttgart. 272 p. (Link)